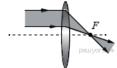
Задания 23. Экспериментальное задание


1. Задание 23 № 51. Используя собирающую линзу, экран, линейку, соберите экспериментальную установку для определения оптической силы линзы. В качестве источника света используйте свет от удалённого окна.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта оптической силы линзы;
- 3) укажите результат измерения фокусного расстояния линзы;
- 4) запишите значение оптической силы линзы.

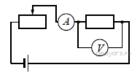
Решение.

1) Схема экспериментальной установки (изображение удалённого источника света (окна) формируется практически в фокальной плоскости) изображена на рисунке.

2)
$$D = 1/F$$
.

3)
$$F = 60 \text{ MM} = 0,060 \text{ M}.$$

4)
$$D = \frac{1}{0,06 \text{ M}} \approx 17 \text{ дитр.}$$

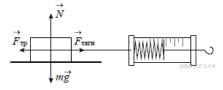

2. Задание 23 № 78. Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_1 , соберите экспериментальную установку для определения работы электрического тока на резисторе. При помощи реостата установите в цепи силу тока 0,3 А. Определите работу электрического тока за 10 минут.

В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта работы электрического тока;
- 3) укажите результаты измерения напряжения при силе тока 0,3 А;
- 4) запишите значение работы электрического тока.

Решение.

1) Схема экспериментальной установки:



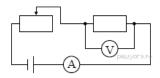
- 2) $A = U \cdot I \cdot t$
- 3) I = 0,3 A; U = 3,6 B; t = 10 мин = 600 с.
- 4) $A = 648 \ Дж.$

3. Задание 23 № 105. Используя каретку (брусок) с крючком, динамометр, два груза, направляющую рейку, соберите экспериментальную установку для измерения коэффициента трения скольжения между кареткой и поверхностью рейки.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта коэффициента трения скольжения;
- 3) укажите результаты измерения веса каретки с грузами и силы трения скольжения при движении каретки с грузами по поверхности рейки;
- 4) запишите числовое значение коэффициента трения скольжения. Решение.
 - 1) Схема экспериментальной установки:

2) $F_{\text{тяги}} = F_{\text{тр}}$ (при равномерном движении).


$$F_{ ext{ iny TP}} = \mu N; \; N = P = mg$$
 , следовательно, $\; F_{ ext{ iny TP}} = \mu P$, следовательно, $\; \mu = rac{F_{ ext{ iny TRIV}}}{P}.$

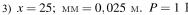
- 3) $F_{\text{TSIPH}} = 0.6\text{H}$; P = 3.0H.
- 4) $\mu \approx 0,2$.

4. Задание 23 № 132. Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_1 , соберите экспериментальную установку для определения мощности, выделяемой на резисторе. При помощи реостата установите в цепи силу тока 0,3 А.

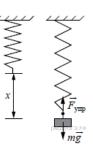
В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта мощности электрического тока;
- 3) укажите результаты измерения напряжения при силе тока 0,3 А;
- 4) запишите численное значение мощности электрического тока. Решение.
 - 1) Схема экспериментальной установки:

- 2) $P = U \cdot I$.
- 3) I = 0.3 A; U = 3.6 B.
- 4) $P = 1, 1 B_T$.


5. Задание 23 № 159. Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и один груз, соберите экспериментальную установку для измерения жёсткости пружины. Определите жёсткость пружины, подвесив к ней один груз. Для измерения веса груза воспользуйтесь динамометром.

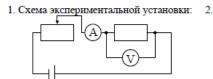
- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта жёсткости пружины;
- 3) укажите результаты измерения веса груза и удлинения пружины;
- 4) запишите числовое значение жёсткости пружины. Решение.
- 1) Схема экспериментальной установки изображена на рисунке.


2)
$$F_{\text{упр}} = mg = P$$
; $F_{\text{упр}} = kx$, следовательно $k = \frac{P}{x}$.

3) $x = 25$; мм = 0,025 м. $P = 1$ H.

4) $k = 1:0,025 = 40 \frac{\text{H}}{\text{M}}$.

4)
$$k = 1:0,025 = 40 \frac{H}{M}$$

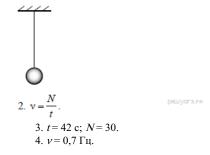


6. Задание 23 № 186. Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_2 , соберите экспериментальную установку для исследования зависимости силы электрического тока в резисторе от напряжения на его концах.

В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) установив с помощью реостата поочерёдно силу тока в цепи 0,4 A, 0,5 A и 0,6 A и измерив в каждом случае значение электрического напряжения на концах резистора, укажите результаты измерения силы тока и напряжения для трёх случаев в виде таблицы (или графика);
- 3) сформулируйте вывод о зависимости силы электрического тока в резисторе от напряжения на его концах.

Решение.



№	I, A	U, B
1	0,4	2,4
2	0,5	3,0
3	0,6	3,6
		решуогэ.г

3. Вывод: при увеличении напряжения на концах проводника сила тока в проводнике также увеличивается.

7. Задание 23 № 213. Используя штатив с муфтой и лапкой, груз с прикреплённой к нему нитью, метровую линейку и секундомер, соберите экспериментальную установку для исследования свободных колебаний нитяного маятника. Определите время 30 полных колебаний и посчитайте частоту колебаний для случая, когда длина нити равна 50 см.

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта частоты колебаний;
- 3) укажите результаты прямых измерений числа колебаний и времени колебаний:
- 4) запишите численное значение частоты колебаний маятника. Решение.
- 1. Схема экспериментальной установки:

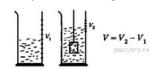
8. Задание 23 № 240. Используя рычажные весы с разновесом, мензурку, стакан с водой, цилиндр № 1, соберите экспериментальную установку для определения плотности материала, из которого изготовлен цилиндр № 1.

В ответе:

- 1) сделайте рисунок экспериментальной установки для определения объёма тела:
- 2) запишите формулу для расчёта плотности;
- 3) укажите результаты измерения массы цилиндра и его объёма;
- 4) запишите численное значение плотности материала цилиндра. Решение.
- 1) Схема экспериментальной установки для определения объёма тела изображена на рисунке.

$$\begin{array}{c}
2) \rho = \frac{m}{V}.
\end{array}$$

3)


$$V_1$$
 V_2

$$m = 156 \text{ г}; \quad V = V_2 - V_1 = 20 \text{ мл} = 20 \text{ см}^3.$$

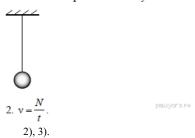
4) $\rho = 7.8 \frac{\Gamma}{\text{см}^3} = 7800 \frac{\text{к}\Gamma}{\text{м}^3}.$

9. Задание 23 № 267. Используя рычажные весы с разновесом, мензурку, стакан с водой, цилиндр № 2, соберите экспериментальную установку для измерения плотности материала, из которого изготовлен цилиндр № 2.

В ответе:

- 1) сделайте рисунок экспериментальной установки для определения объема тела;
- 2) запишите формулу для расчета плотности;
- 3) укажите результаты измерения массы цилиндра и его объема;
- 4) запишите числовое значение плотности материала цилиндра.
 - 1) Схема экспериментальной установки для определения объёма тела:

- 2) $\rho = m/V$;
- 3) m = 170 г; $V = V_2 V_1 = 20 \text{ мл} = 20 \text{ см}^3$;
- 4) $\rho = 8.5 \text{ r/cm}^3 = 8500 \text{ kg/m}^3$.


10. Задание 23 № 294. Используя штатив с муфтой и лапкой, шарик с прикрепленной к нему нитью, линейку и часы с секундной стрелкой (или секундомер), соберите экспериментальную установку для исследования зависимости периода свободных колебаний нитяного маятника от длины нити. Определите время для 30 полных колебаний и вычислите период колебаний для трех случаев, когда длина нити равна, соответственно, 1 м, 0,5 м и 0,25 м.

В ответе:

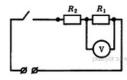
- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты прямых измерений числа колебаний и времени колебаний для трех длин нити маятника в виде таблицы;
- 3) вычислите период колебаний для каждого случая и результаты занесите в таблицу;
- 4) сформулируйте вывод о зависимости периода свободных колебаний нитяного маятника от длины нити.

Решение.

1. Схема экспериментальной установки:

M	Длина нити l (м)	Число колебаний п	Время колебаний t (c)	Период колебаний $T = t/n \ (c)$
1	1	30	60	2
2	0,5	30	42	1,4 _{pquyqca.e}
3	0,25	30	30	1

4) Вывод: при уменьшении длины нити период свободных колебаний нитяного маятника уменьшается.


11. Задание 23 № 321. Используя источник тока (4,5 В), вольтметр, ключ, соединительные провода, резисторы, обозначенные R_1 и R_2 , проверьте экспериментально правило для электрического напряжения при последовательном соединении двух проводников.

В ответе:

- 1) нарисуйте электрическую схему экспериментальной установки;
- 2) измерьте электрическое напряжение на концах каждого из резисторов и общее напряжение на концах цепи из двух резисторов при их последовательном соединении;
- 3) сравните общее напряжение на двух резисторах с суммой напряжений на каждом из резисторов, учитывая, что погрешность прямых измерений с помощью лабораторного вольтметра составляет 0,2 В. Сделайте вывод о справедливости или ошибочности проверяемого правила.

Решение.

1) Схема экспериментальной установки:

- 2) Напряжение на резисторе R_1 : $U_1 = 2.8$ В. Напряжение на резисторе R_2 : $U_2 = 1.4$ В. Общее напряжение на концах цепи из двух резисторов: $U_1 + U_2 = 4.2$ В.
- 3) С учётом погрешности измерений сумма напряжений на концах цепи из двух резисторов находится в интервале от 3,8 В до 4,6 В. Измеренное значение общего напряжения 4,1 В попадает в этот интервал значений.

Вывод: общее напряжение на двух последовательно соединённых резисторах равно сумме напряжений на контактах каждого из резисторов.

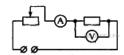
12. Задание 23 № 348. Используя собирающую линзу, экран, линейку, соберите экспериментальную установку для определения оптической силы линзы. В качестве источника света используйте свет от удаленного окна.

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчета оптической силы линзы;
- 3) укажите результат измерения фокусного расстояния линзы;
- 4) запишите численное значение оптической силы линзы. Решение.
- 1) Схема экспериментальной установки (изображение удалённого источника света (окна) формируется практически в фокальной плоскости) изображена на рисунке.

2)
$$D = 1/F$$
;

3)
$$F = 60 \text{ MM} = 0.06 \text{ M}$$
;

4)
$$D = \frac{1}{0.06} = 17$$
 дптр.

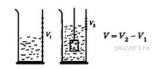

13. Задание 23 № 375. Используя источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_1 соберите экспериментальную установку для исследования зависимости силы электрического тока в резисторе от напряжения на его концах.

В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) установив с помощью реостата поочередно силу тока в цепи 0,4 A, 0,5 A и 0,6 A и измерив в каждом случае значения электрического напряжения на концах резистора, укажите результаты измерения силы тока и напряжения для трех случаев в виде таблицы (или графика);
- 3) сформулируйте вывод о зависимости силы электрического тока в резисторе от напряжения на его концах.

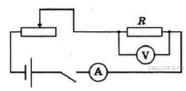
Решение.

1) Схема экспериментальной установки:


2)

№	I(A)	U (B)
1	0,4	2,4
2	0,5	3,0
3	0,6	3,6

 Вывод: при увеличении силы тока в проводнике напряжение, возникающее на концах проводника, также увеличивается. 14. Задание 23 № 429. Используя рычажные весы с разновесом, мензурку, стакан с водой, цилиндр № 1, соберите экспериментальную установку для определения плотности материала, из которого изготовлен цилиндр № 1.

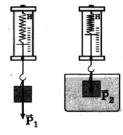

В ответе:

- 1) сделайте рисунок экспериментальной установки для определения объёма тела:
- 2) запишите формулу для расчёта плотности;
- 3) укажите результаты измерения массы цилиндра и его объёма;
- 4) запишите численное значение плотности материала цилиндра. Решение.
 - 1) Схема экспериментальной установки для определения объёма тела:

- 2) $\rho = m/V$;
- 3) m = 156 r; $V = V_2 V_1 = 20 \text{ MJ} = 20 \text{ cm}^3$;
- 4) $\rho = 7.8 \text{ r/cm}^3 = 7800 \text{ kg/m}^3$.
- 15. Задание 23 № 483. Определите мощность, выделяемую на резисторе R при силе тока 0,2 А. Для этого соберите экспериментальную установку, используя источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода и резистор R_1 .

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта электрического сопротивления;
- 3) укажите результаты измерения напряжения при силе тока 0,2 А;
- 4) запишите численное значение электрического сопротивления. Решение.
 - 1) Схема экспериментальной установки:

- 2) $P = U \cdot I$;
- 3) I = 0.2 A; U = 2.4 B
- 4) P = 0.48 Bt.


16. Задание 23 № 510. Используя динамометр, стакан с водой, цилиндр № 2, соберите экспериментальную установку для определения выталкивающей силы (силы Архимеда), действующей на цилиндр.

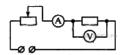
В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта выталкивающей силы;
- 3) укажите результаты измерений веса цилиндра в воздухе и веса цилиндра в воде;
- 4) запишите численное значение выталкивающей силы.

Решение.

1) Схема экспериментальной установки:

- 2) $P_1 = mg$; $P_2 = mg F_{\text{Bыт}}$; $F_{\text{Bыт}} = P_1 P_2$;
- 3) $P_1 = 1.7 \text{ H}$; $P_2 = 1.5 \text{ H}$;
- 4) $F_{\text{выт}} = 0.2 \text{ H}.$


17. Задание 23 № 537. Используя источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_2 , соберите экспериментальную установку для исследования зависимости силы электрического тока в резисторе от напряжения на его концах.

В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) установив с помощью реостата поочерёдно силу тока в цепи 0,4 A, 0,5 A и 0,6 A и измерив в каждом случае значение электрического напряжения на концах резистора, укажите результаты измерения силы тока и напряжения для трёх случаев в виде таблицы (или графика);
- 3) сформулируйте вывод о зависимости силы электрического тока в резисторе от напряжения на его концах.

Решение.

1) Схема экспериментальной установки:

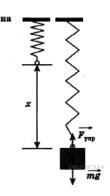
2)

Ne	I(A)	U (B)
1	0,4	2,4
2	0,5	3,0
3	0,6	3,6

3) Вывод: при увеличении силы тока в проводнике напряжение, возникающее на концах проводника, также увеличивается.

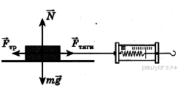
18. Задание 23 № 564. Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и один груз, соберите экспериментальную установку для измерения жёсткости пружины. Определите жёсткость пружины, подвесив к ней один груз. Для измерения веса груза воспользуйтесь динамометром.

В ответе:


- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчета жёсткости пружины;
- 3) укажите результаты измерения веса груза и удлинения пружины;
- 4) запишите числовое значение жёсткости пружины.

Решение.

1) Схема экспериментальной установки изображена на на рисунке.


2)
$$F_{\text{ynp}} = mg = P$$
; $F_{\text{ynp}} = kx$; $\Rightarrow k = \frac{P}{x}$;

- 3) x=25 мм = 0,025 м (измерения считается верным, если приведено в пределах от 23 до 27 мм, погрешность определяется главным образом погрешностью отчёта). P=1 Н (измерение считается верным, если приведено в пределах от 0,9 до 1,1 H);
- 4) $k = \frac{1}{0,025} = 40 \text{ H/M}$ (значение считается верным, если приведено в пределах от 33 до 48 Н/м).

19. Задание 23 № 591. Используя каретку (брусок) с крючком, динамометр, два груза, направляющую рейку, соберите экспериментальную установку для измерения коэффициента трения скольжения между кареткой и поверхностью рейки.

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта коэффициента трения скольжения;
- 3) укажите результаты измерения веса каретки с грузами и силы трения скольжения при движении каретки с грузами по поверхности рейки;
- 4) запишите числовое значение коэффициента трения скольжения. Решение.
- 1) Схема экспериментальной установки изображена на рисунке.
- $F_{\text{ТЯГИ}} = F_{\text{Тр}}$ (при равномерном движении);

$$F_{\mathrm{Tp}} = \mu N; \ \ N = P \Rightarrow F_{\mathrm{Tp}} = \mu P \Rightarrow \mu = \frac{F_{\mathrm{Tp}}}{P};$$

- 3) $F_{\text{Tp}} = 0.6 \text{ H}$; P = 3.0 H;
- 4) $\mu \approx 0,2$.

20. Задание 23 № 618. Используя штатив с муфтой и лапкой, пружину, динамометр с пределом измерения 4 Н, линейку и набор из трёх грузов по 100 г каждый, соберите экспериментальную установку для исследования зависимости силы упругости, возникающей в пружине, от степени растяжения пружины. Определите растяжение пружины, подвешивая к ней поочередно один, два и три груза. Для определения веса грузов воспользуйтесь динамометром.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты измерения веса грузов и удлинения пружины для трёх случаев в виде таблицы (или графика);
- 3) сформулируйте вывод о зависимости силы упругости, возникающей в пружине, от степени растяжения пружины.

Решение.

1) Схема экспериментальной установки изображена на рисунке.

2)

№	$F_{yep} = mg$ (H)	x (mm)
1	1,0	25
2	2,0	50
3	3,0	75 pelliyor

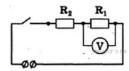
21. Задание 23 № 645. Используя собирающую линзу, экран и линейку, соберите экспериментальную установку для определения оптической силы линзы. В качестве источника света используйте солнечный свет от удалённого окна.

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта оптической силы линзы;
- 3) укажите результаты измерения фокусного расстояния линзы;
- 4) запишите численное значение оптической силы линзы. Решение.
- 1) Схема экспериментальной установки (изображение удалённого источника света (окна) формируется практически в фокальной плоскости) изображена на рисунке.

2)
$$D = 1/F$$
;

3)
$$F = 60 \text{ MM} = 0.06 \text{ M}$$
;

4)
$$D = \frac{1}{0.06} = 17$$
 дитр.


22. Задание 23 № 672. Используя источник тока (4,5 В), вольтметр, ключ, соединительные провода, резисторы, обозначенные R_1 , и R_2 , соберите экспериментальную установку для проверки правила для электрического напряжения при последовательном соединении двух проводников.

В ответе:

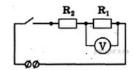
- 1) нарисуйте электрическую схему эксперимента;
- 2) измерьте электрическое напряжение на концах каждого из резисторов и общее напряжение на контактах двух резисторов при их последовательном соединении;
- 3) сравните общее напряжение на двух резисторах с суммой напряжений на каждом из резисторов, учитывая, что погрешность прямых измерений с помощью лабораторного вольтметра составляет 0,2 В. Сделайте вывод.

Решение.

1) Схема экспериментальной установки:

2)

U_1 на резисторе R_1 , В	Напряжение	Общее напряжение $U_{ m oбm}$ на двух резисторах, В	Интервал значений U_1 с учётом погрешности, В	Интервал значений U_2 с учётом погрешности, В	Интервал значений $U_{\rm ofm}$ с учётом погрешности, В рацуогаль
2,8	1,4	4,2	2,6-3,0	1,2-1,6	4,0-4,4


 Вывод: общее напряжение на двух последовательно соединённых резисторах равно сумме напряжений на контактах каждого из резисторов. 23. Задание 23 № 699. Используя источник тока (4,5 В), вольтметр, ключ, соединительные провода, резисторы, обозначенные R_1 , и R_2 , соберите экспериментальную установку для проверки правила для электрического напряжения при последовательном соединении двух проводников.

В ответе:

- 1) Нарисуйте электрическую схему эксперимента;
- 2) Измерьте электрическое напряжение на концах каждого из резисторов и общее напряжение на контактах двух резисторов при их последовательном соединении;
- 3) Сравните общее напряжение на двух резисторах с суммой напряжений на каждом из резисторов, учитывая, что погрешность прямых измерений с помощью лабораторного вольтметра составляет 0,2 В. Слелайте вывол.

Решение.

1) Схема экспериментальной установки:

2)

2016-04-03

U_1 на резисторе R_1 , В	Напряжение	Общее напряжение <i>U</i> _{общ} на двух резисторах, В	Интервал значений U_1 с учётом погрешности, В	Интервал значений U_2 с учётом погрешности, В	Интервал значений $U_{\text{общ}}$ с учётом погрешности, В рацуогаль
2,8	1,4	4,2	2,6-3,0	1,2-1,6	4,0-4,4

20/62

3) Вывод: общее напряжение на двух последовательно соединённых резисторах равно сумме напряжений на контактах каждого из резисторов.

2016-04-03 19/62

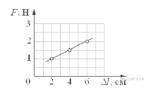
24. Задание 23 № 726. Используя штатив лабораторный с муфтой и лапкой, пружину, груз массой (100 ± 2) г, линейку длиной 300 мм с миллиметровыми делениями, соберите установку для определения жёсткости пружины. Подвесьте пружину за один из концов к штативу. Прикрепив к свободному концу пружины груз, измерьте удлинение пружины

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для определения силы упругости;
- 3) запишите условие равновесия груза на пружине;
- 4) измерьте удлинение пружины после прикрепления к ней груза и запишите измеренную величину;
- 5) определите жёсткость пружины и оцените погрешность её измерения.

Решение.

1) Рисунок экспериментальной установки:



2)
$$F_{\text{VIID}} = k\Delta l$$
.

3)
$$F_{\text{TSJK}} = mg = F_{\text{ynp}} = k\Delta l$$
.

№	Масса груза m (кг)	Удлинение пружины Δl (см)	Модуль силы упругости F (H)
1	0,1	2	1
2	0,2	4	2
3	0,3	6	3 рашуога.

Погрешность измерения удлинения ΔI составляет \approx 0,5 мм.

Зависимость модуля силы упругости пружины от её удлинения носит линейный характер.

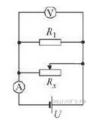
25. Задание 23 № 753. Используя штатив с муфтой и лапкой, шарик с прикреплённой к нему нитью, линейку и часы с секундной стрелкой (или секундомер), соберите экспериментальную установку для исследования зависимости периода свободных колебаний шарика, подвешенного на нити, от длины нити. Определите время 30 полных колебаний и вычислите период колебаний для трёх случаев, когда длина нити равна соответственно 1 м, 0,5 м и 0,25 м.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты прямых измерений числа колебаний и времени колебаний для трёх длин нити маятника в виде таблицы;
- 3) вычислите период колебаний для каждого случая и результаты занесите в таблицу;
- 4) сформулируйте вывод о зависимости периода свободных колебаний нитяного маятника от длины нити.

Решение.

1) Рисунок экспериментальной установки:



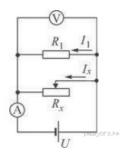
2),3)

No	Длина нити / (м)	Число колебаний <i>п</i>	Время колебаний t (c)	Период колебаний $T = t/n$ (c)
1	1	30	60	2
2	0,5	30	42	1,4
3	0,25	30	30	 рвшуогз.

4) Вывод: при уменьшении длины нити период свободных колебаний нитяного маятника уменьшается.

- 26. Задание 23 № 807. Используя источник постоянного тока с напряжением 4,5 В, амперметр, вольтметр, соединённые параллельно резисторы $R_1 = 12$ Ом и переменный резистор (реостат) R_x ползунок которого установлен в произвольном положении, определите силу тока I_x в реостате R_x путём измерения силы тока, текущего через источник, и напряжения на резисторе R_1 .
 - 1. Соберите электрическую схему, показанную на рисунке.

- 2. Установите ползунок реостата примерно на середину.
- 3. Измерьте силу тока, текущего через источник.
- 4. Измерьте напряжение на резисторе R_1 .
- 5. Определите неизвестную силу тока I_x в реостате R_x .


В ответе:

- 1) изобразите схему изучаемой электрической цепи и укажите на ней направления токов, протекающих через резистор R_1 и реостат R_x :
- 2) укажите результаты измерений силы тока I, текущего через источник, и напряжения U_1 на резисторе R_1 , указав примерную погрешность измерений;
- 3) запишите закон Ома для участка цепи, содержащего резистор R_1 , определив, таким образом, силу тока I_1 в резисторе R_1 ; вычислите силу тока I_1 ;
- 4) запишите правило для токов при параллельном соединении проводников;
- 5) используя п. 2—4, получите формулу для неизвестной силы тока I_x в реостате R_x и запишите её;
- 6) определите численное значение силы тока I_x , оцените погрешность её измерения.

2016-04-03 23/62 2016-04-03

Решение.

1. Схема электрической цепи:

2.
$$I = 1,00 \pm 0,05 \text{ A}$$
; $U_1 = 4,2 \pm 0,1 \text{ B}$;

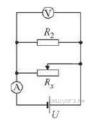
3.
$$I_1 = \frac{U_1}{R_1} = \frac{4.2 \text{ B}}{12 \text{ OM}} = 0.35 \text{ B};$$

4. $I = I_1 + I_x$;

5.
$$I_x = I - I_1 = I - \frac{U_1}{R_1};$$

6.
$$I_x = 1,00 - 0,35 = 0,65$$
 A.

Погрешность измерения силы тока I_{χ} можно оценить методом границ. Так как значение напряжения лежит в интервале от 4,1 B до 4,3 B, а значение силы тока Iлежит в интервале от 0,95 A до 1,05 A, то I_x может изменяться в пределах от

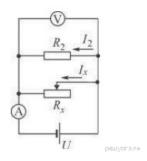

$$(I_x)_{mix} = 0.9 - (4.3/12) \approx 0.6 \text{ A}$$

до

$$(I_x)_{max} = 1,05 - (4,1/12) \approx 0,7 \text{ A}$$

Поэтому результат имеет погрешность ≈0,05 A, то есть $I_x = 0.65 \pm 0.05 \text{ A}.$

- 27. Задание 23 № 834. Используя источник постоянного тока с напряжением 4,5 В, амперметр, вольтметр, соединённые параллельно резисторы $R_2 = 6$ Ом и переменный резистор (реостат), ползунок которого установлен в произвольном положении, определите силу тока I_{x} в реостате R_{x} путем измерения силы тока, текущего через источник, и напряжения на резисторе R_2 .
 - 1. Соберите электрическую схему, показанную на рисунке.



- 2. Установите ползунок реостата примерно на середину.
- 3. Измерьте силу тока, текущего через источник.
- 4. Измерьте напряжение на резисторе R_2 .
- 5. Определите неизвестную силу тока I_x в реостате R_x .

- 1) изобразите схему изучаемой электрической цепи и укажите на ней направления токов, протекающих через резистор R_2 и реостат R_x
- 2) укажите результаты измерений силы тока I, текущего через источник, и напряжения U_2 на резисторе R_2 , указав примерную погрешность измерений;
- 3) запишите закон Ома для участка цепи, содержащего резистор R_2 , определив, таким образом, силу тока I_2 в резисторе R_2 ; вычислите силу тока I_2 ;
- 4) запишите правило для токов при параллельном соединении проводников;
- 5) используя п. 2—4, получите формулу для неизвестной силы тока I_x в реостате R_x и запишите её;
- 6) определите численное значение силы тока I_x , оцените погрешность её измерения.

Решение.

1. Схема электрической цепи:

2.
$$I = 2.00 \pm 0.05 \text{ A}$$
; $U_2 = 4.2 \pm 0.1 \text{ B}$;

3.
$$I_2 = \frac{U_2}{R_2} = \frac{4.2 \text{ B}}{6 \text{ OM}} = 0.7 \text{ A};$$

4.
$$I = I_2 + I_x$$
;

5.
$$I_x = I - I_2 = I - \frac{U_2}{R_2};$$

6.
$$I_x = 2,00 - 0,7 = 1,30$$
A;

Погрешность измерения силы тока I_x можно оценить методом границ. Так как значение напряжения лежит в интервале от 4,1 В до 4,3 В, а значение силы тока l лежит в интервале от 1,95 A до 2,05 A, то I_x может изменяться в пределах от

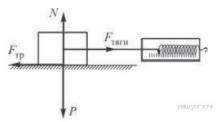
$$(I_x)_{min} = 1,95 - (4,3/6) \approx 1,23 \text{ A}$$

до

$$(I_x)_{max} = 2,05 - (4,1/6) \approx 1,37 \text{ A}.$$

Поэтому результат имеет погрешность ≈0,07 A, то есть

$$I_x = 1,30 \pm 0,07$$
A.


28. Задание 23 № 861. Используя каретку (брусок) с крючком, динамометр, три одинаковых груза и направляющую рейку, соберите экспериментальную установку для изучения свойств силы трения скольжения между кареткой и поверхностью рейки. Поставьте на каретку один груз и измерьте силу, которую необходимо приложить к каретке с грузом, для того чтобы двигать её с постоянной скоростью. Затем поставьте на каретку ещё два груза и повторите эксперимент.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта модуля силы трения скольжения;
- 3) укажите результаты измерения веса каретки, веса груза и модуля силы трения скольжения при движении каретки с одним грузом и с тремя грузами по поверхности рейки;
- 4) сделайте вывод о связи между модулем силы трения скольжения и модулем силы нормальной реакции опоры.

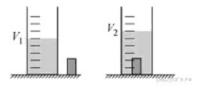
Решение.

1) Схема экспериментальной установки:

2) $F_{\text{тяги}} = F_{\text{тр}}$ (при равномерном движении);

$$F_{ ext{TP}} = \mu N, \ N = P \Rightarrow F_{ ext{TP}} = \mu P.$$

3) Опыт 1: $F_{\text{тяги}} = 0,4 \text{ H}; P = 2,0 \text{ H}.$


Опыт 2: $F_{\text{тяги}} = 0.8 \text{ H}$; P = 4.0 H.

4) При возрастании веса каретки с грузами (а значит, и модуля силы нормальной реакции опоры) в два раза модуль силы трения скольжения также увеличился в 2 раза. Следовательно, модуль силы трения скольжения прямо пропорционален модулю силы нормальной реакции опоры.

29. Задание 23 № 888. Используя рычажные весы с набором гирь, мензурку, стакан с водой и цилиндр № 1, соберите экспериментальную установку для определения плотности материала, из которого изготовлен цилиндр № 1.

В ответе:

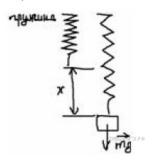
- 1) сделайте рисунок экспериментальной установки для определения объёма тела:
- 2) запишите формулу для расчёта плотности;
- 3) укажите результаты измерения массы цилиндра и его объёма;
- 4) запишите численное значение плотности материала цилиндра. Решение.
 - 1) Рисунок экспериментальной установки:

- 2) $\rho = \frac{m}{V}$;
- 3) m = 156 г; $V = V_2 V_1 = 20$ мл = 20 см³; 4) $\rho = 7.8$ г/см³ = 7800 кг/м³.

30. Задание 23 № 893. Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и 2 груза, соберите экспериментальную установку для определения жесткости пружины. Определите жесткость пружины, подвесив к ней два груза. Для определения веса грузов воспользуйтесь динамометром.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчета жесткости пружины;
- 3) укажите результаты измерения веса грузов и удлинения пружины;
- 4) запишите численное значение жесткости пружины.


При выполнении задания используется комплект оборудования № 3 в составе:

- штатив лабораторный с муфтой и лапкой;
- пружина жесткостью (40 ± 1) H/м;
- -2 груза массой по (100 ± 2) г;
- динамометр школьный с пределом измерения 4 Н (погрешность 0,1 H):
- линейка длиной 20–30 см с миллиметровыми делениями.

Внимание! При замене какого-либо элемента оборудования на аналогичное с другими характеристиками необходимо внести соответствующие изменения в образец выполнения задания.

Решение.

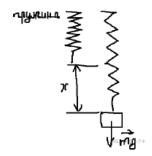
1) Схема экспериментальной установки:

- 2) $F_{\text{VIID}} = mg = P$; $F_{\text{VIID}} = kx \implies k = P/x$
- 3) x = 50 мм = 0,050 м (измерение считается верным, если приведено в пределах от 48 до 52 мм, погрешность определяется главным образом погрешностью отсчета); P = 2 H (измерение считается верным, если приведено в пределах от 1,9 до 2,1 H).
- 4) k = 2/0,05 = 40 Н/м (значение считается верным, если приведено в пределах от 36 до 44 Н/м).

31. Задание 23 № 894. Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и набор из 3 грузов, соберите экспериментальную установку для исследования зависимости силы упругости, возникающей в пружине, от степени растяжения пружины.

В ответе:

- 1) определите растяжение пружины, подвешивая к ней поочередно один, два и три груза. Для определения веса грузов воспользуйтесь динамометром;
- 2) сделайте рисунок экспериментальной установки. Укажите результаты измерения веса грузов и удлинения пружины для трех случаев в виде таблицы (или графика);
- 3) сформулируйте вывод о зависимости силы упругости, возникающей в пружине, от степени растяжения пружины.


При выполнении задания используется комплект оборудования № 3 в составе:

- штатив лабораторный с муфтой и лапкой;
- пружина жесткостью (40 ± 1) H/м;
- -2 груза массой по (100 ± 2) г;
- динамометр школьный с пределом измерения 4 H (погрешность 0,1 H);
- линейка длиной 20–30 см с миллиметровыми делениями.

Внимание! При замене какого-либо элемента оборудования на аналогичное с другими характеристиками необходимо внести соответствующие изменения в образец выполнения задания.

Решение.

1) Схема экспериментальной установки:

2)

$\mathcal{N}_{\underline{o}}$	$F_{ynp} = mg = P(H)$	х (м)
1	1	0,025
2	2	0,05
3	3	0,075 pelliyora.+

3) Вывод: при увеличении растяжения пружины сила упругости, возникающая в пружине, также увеличивается.

32. Задание 23 № 900. Используя штатив с муфтой и лапкой, шарик с прикрепленной к нему нитью, линейку и часы с секундной стрелкой (или секундомер), соберите экспериментальную установку для исследования зависимости периода свободных колебаний нитяного маятника от длины нити. Определите время для 30 полных колебаний и посчитайте период колебаний для трех случаев, когда длина нити равна соответственно 1 м, 0,5 м и 0,25 м.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты прямых измерений числа колебаний и времени колебаний для трех длин нити маятника в виде таблицы;
- 3) посчитайте период колебаний для каждого случая и результаты занесите в таблицу;
- 4) сформулируйте качественный вывод о зависимости периода свободных колебаний нитяного маятника от длины нити.

При выполнении задания используется комплект оборудования №7 в составе:

- штатив с муфтой и лапкой;
- метровая линейка (погрешность 5 мм);
- шарик с прикрепленной к нему нитью длиной 110 см;
- часы с секундной стрелкой (или секундомер).

Внимание! При замене какого-либо элемента оборудования на аналогичное с другими характеристиками необходимо внести соответствующие изменения в образец выполнения задания.

Решение.

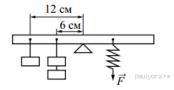
1) Рисунок экспериментальной установки:

2),3)

•	$\mathcal{N}\!$	Длина нити, l (м)	Число колебаний, п	Время колебаний, t (c)	Период колебаний, T= t/n (c)
	1	1	30	60	2
	2	0,5	30	42	1,4
	3	0,25	30	30	1 рашуог э. Р «

⁴⁾ Вывод: при уменьшении длины нити период свободных колебаний нитяного маятника уменьшается.

34/62


33. Задание 23 № 925. Используя рычаг, три груза, штатив и динамометр, соберите установку для исследования равновесия рычага. Три груза подвесьте слева от оси вращения рычага следующим образом: два груза на расстоянии6 см и один груз на расстоянии 12 см от оси. Определите момент силы, которую необходимо приложить к правому концу рычага на расстоянии6 см от оси вращения рычага для того, чтобы он оставался в равновесии в горизонтальном положении.

В ответе:

- 1) зарисуйте схему экспериментальной установки;
- 2) запишите формулу для расчёта момента силы;
- 3) укажите результаты измерений приложенной силы и длины плеча;
- 4) запишите числовое значение момента силы.

Решение.

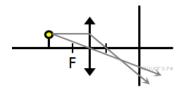
1) Схема экспериментальной установки:

- 2) M = FL.
- 3) F = 4.0 H; L = 0.06 M.
- 4) $M = 0.24 \, \mathrm{H} \cdot \mathrm{M}$.

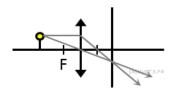
Примечание.

Погрешности прямых измерений:

$$F = (4,0\pm0,2)$$
H; $L = (0,060\pm0,005)$ _M


34. Задание 23 № 930. Используя собирающую линзу, экран, лампу на подставке, источник тока, соединительные провода, ключ, линейку, соберите экспериментальную установку для исследования свойств изображения, полученного с помощью собирающей линзы от лампы, расположенной от центра линзы на расстоянии 15 см.

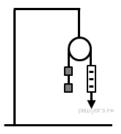
В ответе:


- 1) сделайте схематический рисунок экспериментальной установки для наблюдения изображения лампы, полученного с помощью собирающей линзы;
- 2) передвигая экран, получите чёткое изображение лампы и перечислите свойства изображения (мнимое или действительное, уменьшенное или увеличенное, прямое или перевёрнутое);
- 3) сформулируйте вывод о расположении лампы относительно двойного фокусного расстояния линзы.

Решение.

1) Схема установки:

2) Передвинув экран, получим чёткое изображение:


Изображение получилось перевёрнутое, уменьшенное, действительное.

3) Лампа расположена за двойным фокусным расстоянием от центра линзы.

35. Задание 23 № 934. Используя штатив с муфтой, неподвижный блок, нить, два груза и динамометр, соберите экспериментальную установку для измерения работы силы упругости при равномерном подъёме грузов с использованием неподвижного блока. Определите работу, совершаемую силой упругости при подъёме грузов на высоту 10 см.

В ответе:

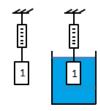
- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта работы силы упругости;
- 3) укажите результаты прямых измерений силы упругости и пути;
- 4) запишите числовое значение работы силы упругости. Решение.
 - 1) Схема установки:

При равномерном подъёме грузов с использованием неподвижного блока работа силы упругости будет вычисляться по формуле:

$$A = F \cdot h$$
,

где F— сила упругости, h— высота, на которую подняли грузы.

- 3) Грузы подняли на высоту 1 метр, при этом сила упругости составляла 4 Н.
- 4) Таким образом, работа силы упругости равна 4 H \cdot 1 м = 4 Дж.


36. Задание 23 № 938. Используя динамометр, стакан с водой, цилиндр № 1, соберите экспериментальную установку для определения выталкивающей силы (силы Архимеда), действующей на цилиндр.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта выталкивающей силы;
- 3) укажите результаты показаний динамометра при взвешивании цилиндра в воздухе и показаний динамометра при взвешивании цилиндра в воде;
- 4) запишите численное значение выталкивающей силы.

Решение.

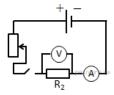
1) Схема установки:

2) Выталкивающая сила вычисляется по формуле:

$$F_a = \rho_{\mathsf{x}\mathsf{K}} \cdot g \cdot V$$

где $\rho_{\mathbb{R}}$ — плотность жидкости, g — ускорение свободного падения, V — объём вытесненной жидкости.

- 3) При взвешивании цилиндра в воздухе, динамометр показал 10 H, а при взвешивании в воде 5 H.
 - 4) Таким образом, выталкивающая сила равна 10 H 5 H = 5 H.


37. Задание 23 № 942. Соберите экспериментальную установку для определения работы электрического тока, совершаемой в резисторе, используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода и резистор, обозначенный R_2 — При помощи реостата установите в цепи силу тока 0,5 А. Определите работу электрического тока в резисторе в течение 5 мин.

В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта работы электрического тока;
- 3) укажите результаты измерения напряжения при силе тока 0,5 А;
- 4) запишите численное значение работы электрического тока.

Решение.

1) Схема установки:

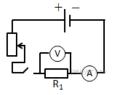
2) Работа электрического тока вычисляется по формуле:

$$A = UIt$$
,

где U— падение напряжения на резистор, I— сила тока, протекающего через резистор, t— время, в течение которого совершается работа.

- 3) При силе тока 0,5 А напряжение на резисторе составило 5 В.
- 4) Вычислим сопротивление резистора:

$$R_2 = \frac{U}{I} = \frac{5 \text{ B}}{0.5 \text{ A}} = 10 \text{ Om}.$$


Таким образом, работа равна:

$$A = UIt = 5 \text{ B} \cdot 0.5 \text{ A} \cdot 300 \text{ c} = 750 \text{Дж}.$$

38. Задание 23 № 946. Определите электрическое сопротивление резистора R_1 . Для этого соберите экспериментальную установку, используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода и резистор, обозначенный R_1 . При помощи реостата установите в цепи силу тока 0,3 А.

В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта электрического сопротивления;
- 3) укажите результаты измерения напряжения при силе тока 0,3 А;
- 4) запишите численное значение электрического сопротивления.
 - 1) Схема установки:

2) Сопротивление в данном случае будет вычисляться по закону Ома:

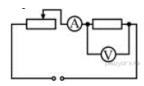
$$R_1=\frac{U}{I},$$

где U— падение напряжения на резистор, I— сила тока, протекающего через резистор.

- 3) При силе тока 0,3 А напряжение на резисторе составило 3,0 В.
- 4) Вычислим сопротивление резистора:

$$R_1 = \frac{U}{I} = \frac{3 \text{ B}}{0.3 \text{ A}} = 10 \text{ Om}.$$

39. Задание 23 № 986. Используя источник тока (4,5 В), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_2 , соберите экспериментальную установку для определения электрического сопротивления резистора.


При помощи реостата установите в цепи силу тока 0,2 А.

В ответе:

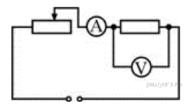
- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта электрического сопротивления;
- 3) укажите результаты измерения напряжения при силе тока 0,2 A:
- 4) запишите численное значение электрического сопротивления резистора.

Решение.

1. Схема экспериментальной установки:

- 2. I = U/R: R = U/I.
- 3. I = 0.2 A; U = 2.4 B.
- 4. $R = 12 O_{M}$.

40. Задание 23 № 1013. Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_1 , соберите экспериментальную установку для определения работы электрического тока, проотекающего через резистор.


При помощи реостата установите в цепи силу тока 0,5 A. Определите работу электрического тока, протекающего через резистор, в течение 5 минут.

В ответе:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта электрического сопротивления;
- 3) укажите результаты измерения напряжения при силе тока 0,5 A;
- 4) запишите численное значение электрического сопротивления резистора.

Решение.

1. Схема экспериментальной установки:

- 2. $A = U \cdot I \cdot t$.
- 3. I = 0.5 A; U = 3.0 B; t = 5 мин = 300 с.
- 4. A = 450 Дж.

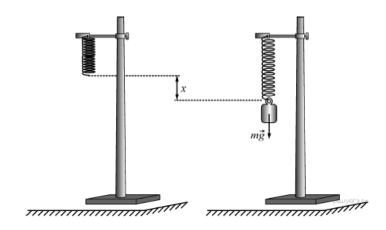
41. Задание 23 № 1076. (По материалам Камзеевой Е. Е.)

Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и один груз, соберите экспериментальную установку для определения жёсткости пружины. Определите жёсткость пружины, подвесив к ней один груз. Для определения веса груза воспользуйтесь динамометром.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта жёсткости пружины;
- 3) укажите результаты измерения веса груза и удлинения пружины;
 - 4) запишите численное значение жёсткости пружины.

Характеристика оборудования


При выполнении задания используется комплект оборудования N_{2} 3

в составе:

- · штатив лабораторный с муфтой и лапкой;
- \cdot пружина жёсткостью (40 ± 1) H/м;
- · 1 груз массой (100 ± 2) г;
- \cdot динамометр школьный с пределом измерения 4 H (C = 0.1 H);
- · линейка длиной 20–30 см с миллиметровыми делениями.

Решение.

1. Схема экспериментальной установки:

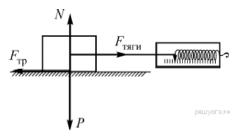
- 2. $F_{\text{VIID}} = mg = P$, $F_{\text{VIID}} = kx \Rightarrow k = P/x$.
- $3. \ x = 25 \ \text{мм} = 0.025 \ \text{м}$ (измерение считается верным, если приведено в пределах от 23 до 27 мм, погрешность определяется главным образом погрешностью отсчёта). P = 1 Н (измерение считается верным, если приведено в пределах от 0,9 до 1,1 Н).
- $4.~k=1~\mathrm{H}~/~0.025~\mathrm{M}=40~\mathrm{H/M}$ (значение считается верным, если приведено в пределах от 33 до 48 H/м).

42. Задание 23 № 1103. (По материалам Камзеевой Е. Е.)

Используя каретку (брусок) с крючком, динамометр, один груз, направляющую рейку, соберите экспериментальную установку для определения коэффициента трения скольжения между кареткой и поверхностью рейки.

В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта коэффициента трения скольжения:
- 3) укажите результаты измерения веса каретки с грузом и силы трения скольжения при движении каретки по поверхности рейки;
- 4) запишите численное значение коэффициента трения скольжения.


Характеристика оборудования

При выполнении задания используется комплект оборудования в составе:

- · каретка массой (100 ± 2) г;
- \cdot 1 груз массой (100 ± 2) г;
- \cdot динамометр школьный с пределом измерения 4 H (C = 0.1 H);
- · направляющая рейка.

Решение.

1. Схема экспериментальной установки:

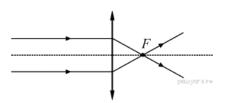
2.
$$F_{\text{тяги}} = F_{\text{тр}}$$
 (при равномерном движении); $F_{\text{тр}} = \mu N$, $N = P \Rightarrow F_{\text{тр}} = \mu P \Rightarrow \mu = F_{\text{тяги}}$ /

- 3. $F_{\text{тяги}} = 0,4 \text{ H}; P = 2,0 \text{ H}.$
- 4. $\mu = 0.2$.

43. Задание 23 № 1160. (По материалам Камзеевой Е. Е.)

Используя собирающую линзу, экран, линейку и лампу в качестве источника света, соберите экспериментальную установку для определения оптической силы линзы. В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта оптической силы линзы;
- 3) укажите результаты измерения фокусного расстояния линзы;
- 4) запишите численное значение оптической силы линзы.


Характеристика оборудования

При выполнении задания используется комплект оборудования в составе:

- собирающая линза
- · линейка длиной 200-300 мм с миллиметровыми делениями
- экран
- рабочее поле
- источник питания постоянного тока 4,5 В
- · соединительные провода
- ключ
- · лампа на подставке

Решение.

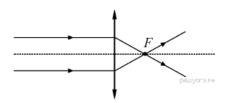
1. Схема экспериментальной установки. Лампу необходимо расположить как можно дальше от линзы. Изображение удалённого источника света формируется практически в фокальной плоскости линзы:

- 2. D = 1/F.
- 3. F = 6 cm = 0.06 m.
- 4. $D = 1/0.06 \approx 16.7$ дптр.

44. Задание 23 № 1187. (По материалам Камзеевой Е. Е.)

Используя собирающую линзу, экран, линейку и лампу в качестве источника света, соберите экспериментальную установку для определения фокусного расстояния линзы. В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты измерения фокусного расстояния линзы;
- 3) оцените погрешность проведённых измерений.


Характеристика оборудования

При выполнении задания используется комплект оборудования в составе:

- · собирающая линза
- · линейка длиной 200–300 мм с миллиметровыми делениями
- экран
- рабочее поле
- источник питания постоянного тока 4,5 В
- · соединительные провода
- · ключ
- · лампа на подставке

Решение.

1. Схема экспериментальной установки. Лампу необходимо расположить как можно дальше от линзы. Изображение удалённого источника света формируется практически в фокальной плоскости линзы:

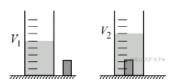
- 2. F = 6 cm = 0.06 m.
- 3. Для оценки погрешности измерения фокусного расстояния необходимо подвигать линзу и определить, на сколько можно ее сместить для того, чтобы изображение источника на экране продолжало казаться чётким. Оценка для погрешности получается примерно ±5 мм.

45. Задание 23 № 1214. (по материалам Камзеевой Е.Е.)

Используя рычажные весы с набором гирь, мензурку, стакан с водой, цилиндр, соберите экспериментальную установку для определения плотности материала, из которого изготовлен цилиндр.

В ответе:

- 1) сделайте рисунок экспериментальной установки для определения объёма тела;
 - 2) запишите формулу для расчёта плотности;
 - 3) укажите результаты измерения массы цилиндра и его объёма;
 - 4) запишите численное значение плотности материала цилиндра.


Характеристика оборудования

При выполнении задания используется комплект оборудования в составе:

- весы рычажные с набором гирь;
- · мензурка (погрешность ± 1 мл);
- · сосуд с водой;
- стальной цилиндр на нити

Решение.

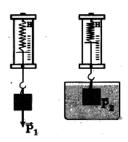
1) рисунок экспериментальной установки:

- 2) $\rho = m/V$
- 3) $m = 156 \text{ г}; V = V_2 V_1 = 20 \text{ мл} = 20 \text{ см}^3;$
- 4) $\rho = 7.8 \text{ F/cm}^3 = 7800 \text{ KF/m}^3$.

46. Задание 23 № 1241. (по материалам Камзеевой Е.Е.)

Используя динамометр, стакан с водой, цилиндр, соберите экспериментальную установку для определения модуля выталкивающей силы (силы Архимеда), действующей на цилиндр. В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта выталкивающей силы;
- 3) укажите результаты измерений веса цилиндра в воздухе и веса цилиндра в воде;
 - 4) запишите численное значение выталкивающей силы.


Характеристика оборудования

При выполнении задания используется комплект оборудования в составе:

- · латунный цилиндр массой 170 г;
- · сосуд с водой;
- · динамометр школьный с пределом измерения 4 H (цена деления 0,1 H).

Решение.

1) рисунок экспериментальной установки:

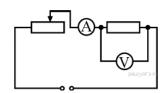
- 2) $P_1 = mg$; $P_2 = mg F_{BbIT}$; $F_{BbIT} = P_1 P_2$;
- 3) $P_1 = 1.7 \text{ H}$; $P_2 = 1.5 \text{ H}$;
- 4) $F_{\text{выт}} = 0.2 \text{ H}.$

47. Задание 23 № 1268. (по материалам Камзеевой Е.Е.)

Используя источник тока $(4,5\,$ B), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_1 , соберите экспериментальную установку для определения электрического сопротивления резистора. При помощи реостата установите в цепи силу тока $0,2\,$ A.

В бланке ответов:

- 1) нарисуйте электрическую схему цепи для эксперимента;
- 2) запишите формулу для расчёта электрического сопротивления;
- 3) укажите результаты измерения напряжения на резисторе при силе тока 0,2 A;
 - 4) запишите численное значение электрического сопротивления.


Характеристика оборудования

При выполнении задания используется комплект оборудования в составе:

- · источник тока (4,5 B);
- · резистор, обозначенный R₁;
- реостат;
- · амперметр (C = 0,1A);
- \cdot вольтметр (C = 0.2 B);
- · ключ и соединительные провода.

Решение.

1) Схема экспериментальной установки:

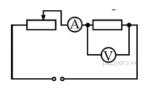
- 2) I = U/R; R = U/I;
- 3) I = 0.2 A; U = 2.4 B;
- 4) R = 12 Om.

48. Задание 23 № 1295. по материалам Камзеевой Е.Е.)

Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный $_{R2}$, соберите экспериментальную установку для определения работы электрического тока в резисторе. При помощи реостата установите в цепи силу тока 0,5 A. Определите работу электрического тока в резисторе, совершённую в течение 5 минут.

В ответе:

- 1) нарисуйте электрическую схему цепи для эксперимента;
- 2) запишите формулу для расчёта работы электрического тока;
- 3) укажите результаты измерения напряжения при силе тока 0,5 A;
 - 4) запишите численное значение работы электрического тока.


Характеристика оборудования

При выполнении задания используется комплект оборудования в составе:

- · источник тока (4,5 B);
- · резистор, обозначенный R_2 ;
- · реостат;
- · амперметр (C = 0,1 A);
- \cdot вольтметр (C = 0.2 B);
- · ключ и соединительные провода.

Решение.

1) Схема экспериментальной установки:

- 2) $A = U \cdot I \cdot t$:
- 3) I = 0.5 A; U = 3.0 B; t = 5 мин = 300 c;
- 4) A = 450 Дж.

- 49. Задание 23 № 1331. Используя каретку (брусок) с крючком, динамометр, два груза, направляющую рейку, соберите экспериментальную установку для измерения работы силы трения скольжения при движении каретки с грузами по поверхности рейки на расстояние 40 см.
 - 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта работы силы трения скольжения:
- 3) укажите результаты измерения модуля перемещения каретки с грузами и силы трения скольжения при движении каретки с грузами по поверхности рейки;
 - 4) запишите числовое значение работы силы трения скольжения. Решение.
 - 1. Схема экспериментальной установки:

- 2) $F_{\text{тяги}} = F_{\text{тр}}$ (при равномерном движении). Работа силы трения $A = -F_{\text{тр}} \cdot S$.
- 3) $F_{\text{тяги}} = 0.6 \text{ H}$; S = 0.4 M.
- 4) A = -0.24 Дж.

50. Задание 23 № 1395. (по материалам Е.Е. Камзеевой)

Используя штатив с муфтой и лапкой, шарик с прикреплённой к нему нитью, линейку и часы с секундной стрелкой (или секундомер), соберите экспериментальную установку для исследования зависимости периода свободных колебаний нитяного маятника от длины нити. Амплитуда колебаний маятника должна быть малой (не более 10–15°). Определите время для 30 полных колебаний и вычислите период колебаний для трёх случаев, когда длина нити равна, соответственно, 1 м, 0,5 м и 0,25 м. В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты прямых измерений числа колебаний и времени колебаний для трёх длин нити маятника в виде таблицы;
- 3) вычислите период колебаний для каждого случая и результаты занесите в таблицу;
- 4) сформулируйте вывод о зависимости периода свободных колебаний нитяного маятника от длины нити.

Решение.

1) рисунок экспериментальной установки:

(2, 3)

	Длина	Число	Время	Период
№	нити	колебаний	колебаний	колебаний
	1(m)	п	<i>t</i> (c)	T = t/n (c)
1	1	30	60	2
2	0,5	30	42	1,4
3	0,25	30	30	1

4) Вывод: при уменьшении длины нити период свободных колебаний нитяного маятника уменьшается.

51. Задание 23 № 1422. (по материалам Е.Е. Камзеевой)

Используя штатив с муфтой и лапкой, шарик с прикреплённой к нему нитью, линейку и часы с секундной стрелкой (или секундомер), соберите экспериментальную установку для исследования зависимости частоты свободных колебаний нитяного маятника от длины нити. Амплитуда колебаний маятника должна быть малой (не более 10–15°). Определите время для 30 полных колебаний и вычислите частоту колебаний для трёх случаев, когда длина нити равна, соответственно, 1 м, 0,5 м и 0,25 м. В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты прямых измерений числа колебаний и времени колебаний для трёх длин нити маятника в виде таблицы;
- 3) вычислите частоту колебаний для каждого случая и результаты занесите в таблицу;
- 4) сформулируйте вывод о зависимости частоты свободных колебаний нитяного маятника от длины нити.

Характеристика оборудования

При выполнении задания используется комплект оборудования №

в составе:

7

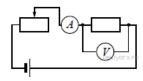
- штатив с муфтой и лапкой;
- метровая линейка (погрешность 5 мм);
- шарик с прикреплённой к нему нитью длиной 110 см;
- часы с секундной стрелкой (или секундомер).

Решение

1) рисунок экспериментальной установки:

2, 3)

	Длина	Число	Время	Частота
$N\!$	нити	колебаний	колебаний	колебаний
	1(м)	п	<i>t</i> (c)	$\nu = n/t$ (Гц)
1	1	30	60	2
2	0,5	30	42	0,7
3	0,25	30	30	1

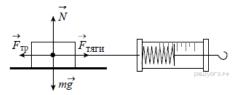

4) Вывод: при уменьшении длины нити частота колебаний нитяного маятника увеличивается.

2016-04-03 53/62

2016-04-03

54/62

- 52. Задание 23 № 1471. Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R1, соберите экспериментальную установку для определения работы электрического тока на резисторе. При помощи реостата установите в цепи силу тока 0,3 А. Определите работу электрического тока за 10 минут.
 - 1) нарисуйте электрическую схему эксперимента;
 - 2) запишите формулу для расчёта работы электрического тока;
- 3) укажите результаты измерения напряжения при силе тока 0,3 А;
 - 4) запишите значение работы электрического тока. Решение.
- 1. Схема экспериментальной установки:
 - 2. $A = U \cdot I \cdot t$.
 - 3. I = 0.3 A; U = 3.6 B; t = 10 мин = 600 с.
 - 4. A = 648 Дж.


53. Задание 23 № 1499. Используя каретку (брусок) с крючком, динамометр, набор из трёх грузов, направляющую рейку, соберите экспериментальную установку для исследования зависимости силы трения скольжения между кареткой и поверхностью горизонтальной рейки от силы нормального давления. Определите силу трения скольжения, помещая на каретку поочерёдно один, два и три груза. Для определения веса каретки с грузами воспользуйтесь динамометром.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты измерений веса каретки с грузами и силы трения скольжения для трёх случаев в виде таблицы (или графика);
- 3) сформулируйте вывод о зависимости силы трения скольжения между кареткой и поверхностью рейки от силы нормального давления

Решение.

1. Схема экспериментальной установки:

№
$$F_{TЯГИ} = F_{Tp}$$
 (H) P (H) = mg
1 0,4 2
2 0,6 3
3 0,8 4

3. Вывод: при увеличении силы нормального давления сила трения скольжения, возникающая между кареткой и поверхностью рейки, также увеличивается.

54. Задание 23 № 1526. Используя штатив с муфтой, неподвижный блок, нить, два груза и динамометр, соберите экспериментальную установку для измерения работы силы упругости при равномерном подъёме грузов с использованием неподвижного блока. Определите работу, совершаемую силой упругости при подъёме двух соединённых вместе грузов на высоту 10 см.

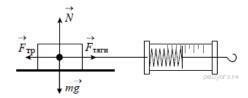
В ответе:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта работы силы упругости;
- 3) укажите результаты прямых измерений силы упругости и пути; запишите числовое значение работы силы упругости.

Наборы лабораторные	Комплект «ГИА-лаборатория»		
Компле	Комплект № 8		
• штатив с муфтой • блок неподвижный • нить • два груза массой по (100 ± 2) г • динамометр школьный с пределом измерения $4 \text{ H (C} = 0.1 \text{ H)}$	• штатив с муфтой • блок неподвижный • нить • два груза массой по (100 ± 2) г • динамометр школьный с пределом измерения 5 H $(C=0,1$ H)		

Решение.

1. Схема экспериментальной установки:


- 2. $A = F_{ynp}S$.
- 3. $F_{\text{ymp}} = 2.0 \text{ H}$; S = 0.1 M.
- 4. $A = 2,0 \text{ H} \cdot 0,1 \text{ м} = 0,2 \text{ Дж}.$

- 55. Задание 23 № 1553. Используя каретку (брусок) с крючком, динамометр, два груза, направляющую рейку, соберите экспериментальную установку для измерения работы силы трения скольжения при движении каретки с грузами по поверхности рейки на расстояние в 40 см.
 - В бланке ответов:
 - 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта работы силы трения скольжения;
- 3) укажите результаты измерения модуля перемещения каретки с грузами и силы трения скольжения при движении каретки с грузами по поверхности рейки;
 - 4) запишите числовое значение работы силы трения скольжения.

Наборы лабораторные	Комплект «ГИА-лаборатория»			
Комплект № 8				
• каретка с крючком на нити $m = (100 \pm 2)$ г • два груза массой по (100 ± 2) г • динамометр школьный с пределом измерения 4 H (C = 0,1 H) • направляющая (коэффициент трения каретки по направляющей приблизительно равен $0,20 \pm 0,05$)	• брусок с крючком на нити $m=(60\pm8)$ г • два груза массой по (100 ± 2) г • динамометр школьный с пределом измерения 1 H (C = 0,02 H) • направляющая (коэффициент трения бруска по направляющей приблизительно равен $0,20\pm0,05$)			

Решение.

1. Схема экспериментальной установки:

- 2. $F_{\rm тяги} = F_{\rm тp}$ (при равномерном движении). Работа силы трения $A = -F_{\rm тp} \cdot S$.
- 3. $F_{\text{TSICH}} = 0.6 \text{ H}$; S = 0.4 M.
- 4. A = -0.24 Дж.

56. Задание 23 № 1586. Используя рычаг, три груза, штатив и динамометр, соберите установку для исследования равновесия рычага. Три груза подвесьте слева от оси вращения рычага следующим образом: два груза на расстоянии 6 см и один груз на расстоянии 12 см от оси. Определите момент силы, которую необходимо приложить к правому концу рычага на расстоянии 6 см от оси вращения рычага для того, чтобы он оставался в равновесии в горизонтальном положении.

В бланке ответов:

- 1) зарисуйте схему экспериментальной установки;
- 2) запишите формулу для расчёта момента силы;
- 3) укажите результаты измерений приложенной силы и длины плеча;
 - 4) запишите числовое значение момента силы.

Решение.

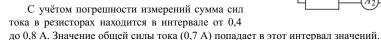
- 1. Схема экспериментальной установки приведена на рисунке.
 - 2. M = FL.
 - 3. F = 4.0 H;
 - L = 0.06 M.
 - 4. $M = 0.24 \text{ H} \cdot \text{M}$

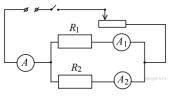
57. Задание 23 № 1613. Используя источник тока, амперметр, реостат, ключ, соединительные провода, резисторы, обозначенные R_1 и R_2 , проверьте экспериментально правило сложения силы электрического тока при параллельном соединении двух проводников: R_1 и R_2 .

В бланке ответов:

- 1) нарисуйте электрическую схему экспериментальной установки;
- 2) с помощью реостата установите силу тока в неразветвлённой части цепи 0,7 A и измерьте силу электрического тока в каждом из резисторов при их параллельном соединении;
- 3) сравните общую силу тока (до разветвления) с суммой сил тока в каждом из резисторов (в каждом из ответвлений), учитывая, что погрешность прямых измерений с помощью амперметра составляет 0.1 А;
- 4) сделайте вывод о справедливости или ошибочности проверяемого правила.

Решение.

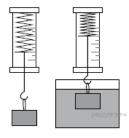

1. Схема экспериментальной установки приведена на рисунке.


2. I = 0.7 A.

Сила тока в резисторе R_1 : $I_1 = 0,2$ A.

Сила тока в резисторе R_2 : $I_2 = 0,4$ A.

3. Сумма сил тока: $I_1 + I_2 = 0.6$ A.



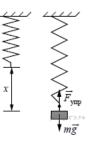
Вывод: при параллельном соединении резисторов общая сила тока до разветвления равна сумме сил тока в каждом из ответвлений.

- 58. Задание 23 № 1640. Используя динамометр, стакан с водой, цилиндр № 1, соберите экспериментальную установку для определения выталкивающей силы (силы Архимеда), действующей на цилиндр.
 - 1) сделайте рисунок экспериментальной установки;
 - 2) запишите формулу для расчёта выталкивающей силы;
- 3) укажите результаты показаний динамометра при взвешивании цилиндра в воздухе и показаний динамометра при взвешивании цилиндра в воде;
 - 4) запишите численное значение выталкивающей силы.

Решение.

1. Схема экспериментальной установки:

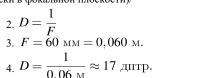
- 2. $F_{y\pi p1} = mg$, $F_{y\pi p2} = mg F_{BHT}$; $F_{BHT} = F_{y\pi p1} F_{y\pi p2}$.
- 3. $F_{\text{ymp1}} = 1.6 \text{ H}$; $F_{\text{ymp2}} = 1.4 \text{ H}$.
- 4. $F_{\text{plut}} = 0.2 \text{ H}.$

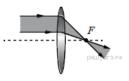

- 59. Задание 23 № 1667. Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и один груз, соберите экспериментальную установку для измерения жёсткости пружины. Определите жёсткость пружины, подвесив к ней один груз. Для измерения веса груза воспользуйтесь динамометром.
 - 1) сделайте рисунок экспериментальной установки;
 - 2) запишите формулу для расчёта жёсткости пружины;
- 3) укажите результаты измерения веса груза и удлинения пружи-
 - 4) запишите числовое значение жёсткости пружины.

Решение.

1. Схема экспериментальной установки (см. рисунок).

2.
$$F_{\text{упр}} = mg = P$$
, $F_{\text{упр}} = kx$, следовательно $k = \frac{P}{x}$.
3. $x = 25$ мм = 0,025 м. $P = 1$ Н.


4.
$$k = 1 : 0.025 = 40 \text{ H/m}.$$



- 60. Задание 23 № 1703. Используя собирающую линзу, экран, линейку, соберите экспериментальную установку для определения оптической силы линзы. В качестве источника света используйте свет от удалённого окна.
 - 1) сделайте рисунок экспериментальной установки;
 - 2) запишите формулу для расчёта оптической силы линзы;
 - 3) укажите результат измерения фокусного расстояния линзы;
 - 4) запишите значение оптической силы линзы.

Решение.

1. Схема экспериментальной установки (изображение удалённого источника света (окна) формируется практически в фокальной плоскости)/

2016-04-03